The Poincaré Map of Randomly Perturbed Periodic Motion
نویسندگان
چکیده
A system of autonomous differential equations with a stable limit cycle and perturbed by small white noise is analyzed in this work. In the vicinity of the limit cycle of the unperturbed deterministic system, we define, construct, and analyze the Poincare map of the randomly perturbed periodic motion. We show that the time of the first exit from a small neighborhood of the fixed point of the map, which corresponds to the unperturbed periodic orbit, is well approximated by the geometric distribution. The parameter of the geometric distribution tends zero together with the noise intensity. Therefore, our result can be interpreted as an estimate of stability of periodic motion to random perturbations. In addition, we show that the geometric distribution of the first exit times translates into statistical properties of solutions of important differential equation models in applications. To this end, we demonstrate three examples from mathematical neuroscience featuring complex oscillatory patterns characterized by the geometric distribution. We show that in each of these models the statistical properties of emerging oscillations are fully explained by the general properties of randomly perturbed periodic motions identified in this paper.
منابع مشابه
Analysis of 3D Passive Walking Including Turning Motions for the Finite-width Rimless Wheel
The focus of studies in the field of passive walking has often been on straight walking, while less attention has been paid to the field of turning motions. In this paper, the passive motions of a finite width rimless wheel as the simplest 3D model of passive biped walkers was investigated with a focus on turning motions. For this purpose, the hybrid model of the system consisting of continuous...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملPoincaré Analysis for Hybrid Periodic Orbits of Systems with Impulse Effects under External Inputs
In this paper we investigate the relation between robustness of periodic orbits exhibited by systems with impulse effects and robustness of their corresponding Poincaré maps. In particular, we prove that input-to-state stability (ISS) of a periodic orbit under external excitation in both continuous and discrete time is equivalent to ISS of the corresponding 0-input fixed point of the associated...
متن کاملChaotic pitch Motion of a Magnetic Spacecraft with viscous Drag in an elliptical Polar Orbit
We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in an almost circular orbit under the influence of a gravity gradient torque. The spacecraft is also subject to the influence of three perturbations: the small eccentricity of the elliptical orbit, a small magnetic torque due to the interaction with the Earth’s magnetic field, and a small aerodynamic viscous drag generate...
متن کاملA Symbolic Algorithm for the Computation of Periodic Orbits in Non–Linear Differential Systems
The Poincaré–Lindstedt method in perturbation theory is used to compute periodic solutions in perturbed differential equations through a nearby periodic orbit of the unperturbed problem. The adaptation of this technique to systems of differential equations of first order could produce meaningful advances in the qualitative analysis of many dynamical systems. In this paper, we present a new symb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 23 شماره
صفحات -
تاریخ انتشار 2013